THE EFFECTIVENESS OF AI TOOLS IN EVALUATING IDIOMATIC EXPRESSIONS USAGE AMONG LEARNERS

Authors

  • Aamal Aalfaqih University of South Florida

Keywords:

English Language Teaching

Abstract

This paper analyzes the potential of Artificial Intelligence interventions for assessing idiomatic expressions among language learners. Idiomatic expressions are a challenging aspect of language proficiency as their meanings are figurative and culture specific. This paper aspires to explore how current AI technologies like natural language processing, adaptive learning platforms, and automated speech evaluation systems measure learners' understanding of idiomatic expressions. It reviews the strengths and limitations of AI in providing real-time feedback and where AI fails to understand idioms regarding cultural or contextual nuances accurately. It emphasizes the importance of developing more sophisticated AI systems that can consider this cultural understanding. It proposes hybrid models combining AI with human evaluation for fine-grained judgments. Ultimately, it suggests that AI is a promising way of assisting learners in learning an idiomatic language, and future directions are for improving AI's role in idiomatic expression evaluation.

References

Adewumi, T. P., Vadoodi, R., Tripathy, A., Nikolaidou, K., Liwicki, F., & Liwicki, M. (2021). Potential idiomatic expression (PIE)-English: Corpus for classes of idioms. arXiv. https://doi.org/10.48550/arxiv.2105.03280

Adewumi, T., Liwicki, F., & Liwicki, M. (2022). Vector representations of idioms in conversational systems. Sci, 4(4), 37. https://doi.org/10.3390/sci4040037

Akuzawa, K., Iwasawa, Y., & Matsuo, Y. (2018). Expressive speech synthesis via modeling expressions with variational autoencoder. In Proceedings of the Interspeech 2018 Conference (pp. 3067–3071). ISCA. https://doi.org/10.21437/interspeech.2018-1113

Alharthi, T. (2019). The learner’s levels of collocation knowledge and idiomatic expressions: Exploring the relationship of acquisition of two items of phraseology. International Journal of Applied Linguistics and English Literature, 8(5), 39–48.

Almusharraf, N., & Alotaibi, H. (2023). An error-analysis study from an EFL writing context: Human and automated essay scoring approaches. Technology, Knowledge and Learning, 28(3), 1015–1031. https://doi.org/10.1007/s10758-022-09592-z

Amini, M., Ravindran, L., & Lee, K. F. (2024). Implications of using AI in translation studies: Trends, challenges, and future direction. Asian Journal of Research in Education and Social Sciences, 6(1), 740–754.

Baldwin, T., & Kim, S. N. (2010). Multiword expressions. In Handbook of Natural Language Processing (2nd ed., pp. 267–292). Chapman and Hall/CRC.

Bardovi-Harlig, K. (2002). A new starting point? Investigating formulaic use and input in future expression. Studies in Second Language Acquisition, 24(2), 189–198. https://doi.org/10.1017/S0272263102002036

Beck, S. D., & Weber, A. (2020). Context and literality in idiom processing: Evidence from self-paced reading. Journal of Psycholinguistic Research, 49, 837–863. https://doi.org/10.1007/s10936-020-09719-2

Behzad, S., Sakaguchi, K., Schneider, N., & Zeldes, A. (2022). Elqa: A corpus of metalinguistic questions and answers about English. arXiv preprint arXiv:2205.00395. https://doi.org/10.48550/arXiv.2205.00395

Benkhalfallah, F., & Laouar, M. R. (2023). Artificial intelligence-based adaptive e-learning environments. In K. Kabassi, P. Mylonas, & J. Caro (Eds.), Proceedings of the 3rd International Conference on Novel & Intelligent Digital Systems (NiDS 2023) (Lecture Notes in Networks and Systems, Vol. 677, pp. 62–66). Springer. https://doi.org/10.1007/978-3-031-44097-7_6

Bicknell, K., Brust, C., & Settles, B. (2023). How Duolingo’s AI learns what you need to learn: The language-learning app tries to emulate a great human tutor. IEEE Spectrum, 60(3), 28–33. https://doi.org/10.1109/MSPEC.2023.10061631

Bishop, J., Hassan, W., Bilsland, R., & Alexander, E. (2024). Enhancing emotionally intelligent responses in AIML systems through idiom-emoticon integration and analysis. In B. Christiansen & F. F. Adedoyin (Eds.), Generative AI and multifactor productivity in business (pp. 133–159). IGI Global.

Boers, F., & Lindstromberg, S. (Eds.). (2008). Cognitive linguistic approaches to teaching vocabulary and phraseology. De Gruyter Mouton. https://doi.org/10.1515/9783110199161

Boers, F., Eyckmans, J., & Stengers, H. (2007). Presenting figurative idioms with a touch of etymology: More than mere mnemonics? Language Teaching Research, 11(1), 43–62. https://doi.org/10.1177/1362168806072460

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., ... Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165. https://doi.org/10.48550/arXiv.2005.14165

Buddemeyer, A., Walker, E., & Alikhani, M. (2021). Words of wisdom: Representational harms in learning from AI communication. arXiv Preprint arXiv:2111.08581. https://doi.org/10.48550/arXiv.2111.08581

Bukovčanová, A. (2024). The cultural nuances AI can’t capture: Why human translators are irreplaceable. Translata. https://www.translata.eu/blog/the-cultural-nuances-ai-cant-capture-why-human-translators-are-irreplaceable

Carrol, G., & Segaert, K. (2024). As easy as cake or a piece of pie? Processing idiom variation and the contribution of individual cognitive differences. Memory & Cognition, 52(2), 334–351. https://doi.org/10.3758/s13421-023-01463-x

Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510

Chen, L., Zechner, K., Yoon, S.-Y., Evanini, K., Wang, X., Loukina, A., Tao, J., Davis, L., Lee, C. M., Ma, M., Mundkowsky, R., Lu, C., Leong, C. W., & Gyawali, B. (2018). Automated scoring of nonnative speech using the SpeechRater v. 5.0 engine. ETS Research Report Series, 2018(1), 1–31. https://doi.org/10.1002/ets2.12198

Chen, M. R. A. (2024). The AI chatbot interaction for semantic learning: A collaborative note-taking approach with EFL students. Language Learning & Technology, 28(1), 1–25. https://hdl.handle.net/10125/73586

Cheng, J. (2011). Automatic assessment of prosody in high-stakes English tests. In Proceedings of Interspeech 2011 (pp. 1589–1592). International Speech Communication Association. https://doi.org/10.21437/Interspeech.2011-477

Cieślicka, A. (2006). Literal salience in on-line processing of idiomatic expressions by second language learners. Second Language Research, 22(2), 115–144. https://doi.org/10.1191/0267658306sr263oa

Cieślicka, A. B. (2015). Idiom acquisition and processing by second/foreign language learners. In R. R. Heredia & A. B. Cieślicka (Eds.), Bilingual figurative language processing (pp. 208–244). Cambridge University Press. https://doi.org/10.1017/CBO9781139342100.012

Conklin, K., & Schmitt, N. (2012). The processing of formulaic language. Annual Review of Applied Linguistics, 32, 45–61. https://doi.org/10.1017/S0267190512000074

Dandachi, I. E. (2024). AI-powered personalized learning: Toward sustainable education. In R. R. Heredia & A. B. Cieślicka (Eds.), Navigating the intersection of business, sustainability and technology (pp. 109–118). Springer Nature. https://doi.org/10.1007/978-981-99-8572-2_5

Dunn, J. (2022). Natural language processing for corpus linguistics. Cambridge University Press.‏ https://doi.org/10.1017/9781009070447

Duvall, J. (2024). Memrise vs. Duolingo: Which is better for language learning? Duolingo. https://duolingoguides.com/memrise-vs-duolingo/

Erman, B., & Warren, B. (2000). The idiom principle and the open choice principle. Text & Talk, 20(1), 29-62.‏ https://doi.org/10.1515/text.1.2000.20.1.29

Fornaciari, F. D. L., Altuna, B., Gonzalez-Dios, I., & Melero, M. (2024). A hard nut to crack: Idiom detection with conversational large language models. arXiv Preprint arXiv:2405.10579. https://doi.org/10.48550/arXiv.2405.10579

Gamage, G., De Silva, D., Adikari, A., & Alahakoon, D. (2022, July). A BERT-based idiom detection model. In Proceedings of the 15th International Conference on Human System Interaction (pp. 1–5). IEEE. https://doi.org/10.1109/HSI55341.2022.9869485

GeeksforGeeks. (2024). Signal processing and artificial intelligence (AI). GeeksforGeeks. https://www.geeksforgeeks.org/signal-processing-and-artificial-intelligence-ai/

Gibbs, R. W., & Colston, H. L. (2012). Interpreting figurative meaning. Cambridge University Press.‏ https://doi.org/10.1017/CBO9781139168779

Glucksberg, S., & McGlone, M. S. (2001). Understanding figurative language: From metaphor to idioms (Oxford Psychology Series No. 36). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195111095.001.0001

Goshkheteliani, I. (2013). Idioms in cross-cultural communication. In J. Szerszunowicz, B. Nowowiejski, K. Yagi, & T. Kanzaki (Eds.), Research on phraseology across continents (Vol. 2, pp. 19–36). University of Bialystok Publishing House.

Guest, C. (2023, December 15). The impact of AI on language learning. Pearson. https://www.pearson.com/languages/community/blogs/2023/12/ai-and-language-learning.html

Halenko, N., & Wang, J. (Eds.). (2022). Pragmatics in English language learning. Cambridge University Press.‏ https://doi.org/10.1017/9781108894241

Hawanti, S., & Khudoiberdieva, M. Z. (2023). AI chatbot-based learning: Alleviating students' anxiety in English writing classroom. Bulletin of Social Informatics Theory and Application, 7(2), 182–192. https://doi.org/10.31763/businta.v7i2.659

He, W., Idiart, M., Scarton, C., & Villavicencio, A. (2024). Enhancing idiomatic representation in multiple languages via an adaptive contrastive triplet loss. arXiv Preprint arXiv:2406.15175. https://doi.org/10.48550/arXiv.2406.15175

Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. International Journal of Artificial Intelligence in Education, 24, 470-497.‏ https://doi.org/10.1007/s40593-014-0024-x

Helm, P., Bella, G., Koch, G., & Giunchiglia, F. (2024). Diversity and language technology: How language modeling bias causes epistemic injustice. Ethics and Information Technology, 26(1), Article 8. https://doi.org/10.1007/s10676-023-09742-6

Hernandez, M. (2024, May 17). Build proficiency for language learners by assessing AI outputs: Insights from a UChicago instructor’s experimentation. Academic Technology Solutions. https://academictech.uchicago.edu/2024/05/17/build-proficiency-for-language-learners-by-assessing-ai-outputs-insights-from-a-uchicago-instructors-experimentation/

Imhof, C., Bergamin, P., & McGarrity, S. (2020). Implementation of adaptive learning systems: Current state and potential. In P. Isaias, D. G. Sampson, & D. Ifenthaler (Eds.), Online teaching and learning in higher education (pp. 93–115). Springer. https://doi.org/10.1007/978-3-030-48190-2_6

Jia, F., Sun, D., Ma, Q., & Looi, C.-K. (2022). Developing an AI-based learning system for L2 learners’ authentic and ubiquitous learning in English language. Sustainability, 14(23), Article 15527.‏ https://doi.org/10.3390/su142315527

Kabra, A., Liu, E., Khanuja, S., Aji, A. F., Winata, G. I., Cahyawijaya, S., ... & Neubig, G. (2023). Multi-lingual and multi-cultural figurative language understanding. arXiv Preprint arXiv:2305.16171. https://doi.org/10.48550/arXiv.2305.16171

Khakpour, A., & Colomo-Palacios, R. (2021). Convergence of gamification and machine learning: A systematic literature review. Technology, Knowledge and Learning, 26(3), 597–636. https://doi.org/10.1007/s10758-020-09456-4

Knietaite, A., Allsebrook, A., Minkov, A., Tomaszewski, A., Slinko, N., Johnson, R., ... & Villavicencio, A. (2024). Is less more? Quality, quantity and context in idiom processing with natural language models. arXiv Preprint arXiv:2405.08497. https://doi.org/10.48550/arXiv.2405.08497

Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: systematic literature review. International Journal of Educational Technology in Higher Education, 20(1), 56.‏ https://doi.org/10.1186/s41239-023-00426-1

Laufer, B. (2005). Focus on form in second language vocabulary learning. EUROSLA Yearbook, 5(1), 223-250.‏ https://doi.org/10.1075/eurosla.5.11lau

Leung, C. (2022). Language proficiency: From description to prescription and back. Educational Linguistics, 1(1), 56-81.‏ https://doi.org/10.1515/eduling-2021-0006

Li, C., Chen, M., Wang, J., Sitaram, S., & Xie, X. (2024). Culture LLM: Incorporating cultural differences into large language models. arXiv Preprint arXiv:2402.10946. https://doi.org/10.48550/arXiv.2402.10946

Li, L. (2023). From idioms to constructions. In Quadri-syllabic schematic idioms in Chinese: Description and acquisition (pp. 7–28). Springer. https://doi.org/10.1007/978-981-19-7202-7_2

Li, L. (2023). Idiom acquisition and usage-based language learning theory. In Quadri-syllabic schematic idioms in Chinese: Description and acquisition (pp. 29–48). Springer. https://doi.org/10.1007/978-981-19-7202-7_3

Li, L., & Sporleder, C. (2010, August). Linguistic cues for distinguishing literal and non-literal usages. In C.-R. Huang & D. Jurafsky (Eds.), Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010): Posters (pp. 683–691). Coling 2010 Organizing Committee. https://aclanthology.org/C10-2078

Li, S., Chen, J., Yuan, S., Wu, X., Yang, H., Tao, S., & Xiao, Y. (2024, March). Translate meanings, not just words: IdiomKB’s role in optimizing idiomatic translation with language models. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 17, pp. 18554–18563). https://doi.org/10.1609/aaai.v38i17.29817

Lin, Y.-J., & Wang, H.-C. (2021). Using virtual reality to facilitate learners’ creative self-efficacy and intrinsic motivation in an EFL classroom. Education and Information Technologies, 26(4), 4487–4505. https://doi.org/10.1007/s10639-021-10472-9

Lingo Vista. (n.d.). Understanding the cultural context of idioms. Lingo Vista. https://lingovista.com/language-learning/cultural-insights/understanding-the-cultural-context-of-idioms/

Liontas, J. (2002). Context and idiom understanding in second languages. EUROSLA Yearbook, 2(1), 155-185.‏ https://doi.org/10.1075/eurosla.2.11lio

words: IdiomKB’s role in optimizing idiomatic translation with language models. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 17, pp. 18554–18563).‏ https://doi.org/10.1609/aaai.v33i01.33016738

Liu, D. (2017). Idioms: Description, comprehension, acquisition, and pedagogy. Routledge.‏ https://doi.org/10.4324/9781315092843

Liu, J., O’Hara, N., Rubin, A., Draelos, R., & Rudin, C. (2020, July). Metaphor detection using contextual word embeddings from transformers. In Proceedings of the Second Workshop on Figurative Language Processing (pp. 250–255). Online: Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.figlang-1.34

Liu, N. F., Gardner, M., Belinkov, Y., Peters, M. E., & Smith, N. A. (2019). Linguistic knowledge and transferability of contextual representations. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 1073–1094). Association for Computational Linguistics. https://doi.org/10.18653/v1/N19-1112

Liu, Y. (2019). Fine-tune BERT for extractive summarization. arXiv Preprint arXiv:1903.10318. https://doi.org/10.48550/arXiv.1903.10318

Liu, Y., & Zu, Y. (2024). Design and implementation of adaptive English learning system integrating language contexts. Journal of Electrical Systems, 20(9s), 85–91. https://journal.esrgroups.org/jes/article/view/4293

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). ROBERTA: A robustly optimized BERT pretraining approach. arXiv Preprint arXiv:1907.11692. https://doi.org/10.48550/arXiv.1907.11692

Loukina, A., Zechner, K., Chen, L., & Heilman, M. (2015, June). Feature selection for automated speech scoring. In Proceedings of the Tenth Workshop on Innovative Use of NLP for Building Educational Applications (pp. 12–19). Association for Computational Linguistics. https://doi.org/10.3115/v1/W15-0602

Luo, Q., & Puett, M. (2024). Anglo-American bias could make generative AI an invisible intellectual cage. Nature, 629(8014), 1004. https://doi.org/10.1038/d41586-024-01573-9

MacIntyre, P., & Gregersen, T. (2012). Emotions that facilitate language learning: The positive-broadening power of the imagination. Studies in Second Language Learning and Teaching, 2(2), 193–213. https://doi.org/10.14746/ssllt.2012.2.2.4

Madabushi, H. T., Gow-Smith, E., Scarton, C., & Villavicencio, A. (2021). A stitch in language models: Dataset and methods for the exploration of idiomaticity in pre-trained language models. arXiv Preprint arXiv:2109.04413. https://doi.org/10.48550/arXiv.2109.04413

Molenaar, I. (2022). The concept of hybrid human-AI regulation: Exemplifying how to support young learners’ self-regulated learning. Computers and Education: Artificial Intelligence, 3, Article 100070. https://doi.org/10.1016/j.caeai.2022.100070

Mollick, E., Mollick, L., Bach, N., Ciccarelli, L. J., Przystanski, B., & Ravipinto, D. (2024). AI agents and education: Simulated practice at scale. arXiv Preprint arXiv:2407.12796. https://doi.org/10.48550/arXiv.2407.12796

Myers, A. (2023). AI detectors biased against non-native English writers. Stanford Institute for Human-Centered Artificial Intelligence. https://hai.stanford.edu/news/ai-detectors-biased-against-non-native-english-writers

Mykhalevych, N. (2024, April 4). Does AI understand idioms? Preply. https://preply.com/en/blog/ai-idioms/

Nassaji, H., & Kartchava, E. (2017). Corrective feedback in second language teaching and learning: Research, theory, applications, implications. Routledge.

Nedumpozhimana, V., Klubička, F., & Kelleher, J. D. (2022). Shapley idioms: Analysing BERT sentence embeddings for general idiom token identification. Frontiers in Artificial Intelligence, 5, Article 813967. https://doi.org/10.3389/frai.2022.813967

Ngueajio, M. K., & Washington, G. (2022, June). Hey ASR system! Why aren’t you more inclusive? Automatic speech recognition systems’ bias and proposed bias mitigation techniques: A literature review. In J. Zhou & Q. Tian (Eds.), HCI International 2022 – Late Breaking Papers: Interacting with eXtended Reality and Artificial Intelligence (Lecture Notes in Computer Science, Vol. 13517, pp. 421–440). Springer. https://doi.org/10.1007/978-3-031-21707-4_30

Opeton. (2024). AI-driven language acquisition: Unlocking the power of artificial intelligence in language learning. Opeton. https://www.opeton.co/blog/ai-driven-language-acquisition-unlocking-power-of-artificial-intelligence-in-language-learning

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., ... Lowe, R. (2022). Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35, 27730–27744.

Peixoto, B., Pinto, R., Melo, M., Cabral, L., & Bessa, M. (2021). Immersive virtual reality for foreign language education: A prisma systematic review. IEEE Access, 9, 48952-48962.‏ https://doi.org/10.1109/ACCESS.2021.3068858

Prabhakaran, V., Qadri, R., & Hutchinson, B. (2022). Cultural incongruencies in artificial intelligence. arXiv Preprint arXiv:2211.13069. https://doi.org/10.48550/arXiv.2211.13069

Richards, J. C., & Rodgers, T. S. (2014). Approaches and methods in language teaching (3rd ed.). Cambridge University Press.

Samani, E. R. (2012). The effect of conceptual metaphors on learning idioms by L2 learners. International Journal of English Linguistics, 2(1), 249-256.‏ https://doi.org/10.5539/ijel.v2n1p249

Selvi, R. S., Mohana, S., Rennis, G., Bharath, S., Boomeswar, A., & Liviyan, C. L. (2023). Idiom sense: Finding figurative meaning of idioms using natural language processing techniques. Journal of Emerging Technologies and Innovative Research, 10(7), f169–f175. http://www.jetir.org/papers/JETIR2307522.pdf

Burt, R. (2023, November 20). Driving education forward: Chatbots as teaching tools. Sensei LMS. https://senseilms.com/chatbot-for-learning/

Shen, S., Logeswaran, L., Lee, M., Lee, H., Poria, S., & Mihalcea, R. (2024). Understanding the capabilities and limitations of large language models for cultural commonsense. arXiv Preprint arXiv:2405.04655. https://doi.org/10.48550/arXiv.2405.04655

Shi, H., & Aryadoust, V. (2024). A systematic review of AI-based automated written feedback research. ReCALL, 36(2), 187-209.‏ https://doi.org/10.1017/S0958344023000265

Singla, Y. K., Krishna, S., Shah, R. R., & Chen, C. (2022, June). Using sampling to estimate and improve performance of automated scoring systems with guarantees. Proceedings of the AAAI Conference on Artificial Intelligence 36(11), 12835-12843.‏ https://doi.org/10.1609/aaai.v36i11.21563

Siyanova-Chanturia, A. (2015). On the ‘holistic’ nature of formulaic language. Corpus Linguistics and Linguistic Theory, 11(2), 285-301.‏ https://doi.org/10.1515/cllt-2014-0016

Škvorc, T., Gantar, P., & Robnik-Šikonja, M. (2022). MICE: mining idioms with contextual embeddings. Knowledge-Based Systems, 235, 107606.‏ https://doi.org/10.1016/j.knosys.2021.107606

Smith, S. (2023). Combining human and AI translations: A skilful approach. Day translations blog. https://www.daytranslations.com/blog/combining-human-and-ai-translations/

Son, J. B., Ružić, N. K., & Philpott, A. (2023). Artificial intelligence technologies and applications for language learning and teaching. Journal of China Computer-Assisted Language Learning. Advance online publication. https://doi.org/10.1515/jccall-2023-0015

Sun, W. (2023). The impact of automatic speech recognition technology on second language pronunciation and speaking skills of EFL learners: A mixed methods investigation. Frontiers in Psychology, 14, Article 1210187.‏ https://doi.org/10.3389/fpsyg.2023.1210187

Taguchi, N. (2015). Developing interactional competence in a Japanese study abroad context. Multilingual Matters. https://doi.org/10.21832/9781783093731 Dokumen

Taguchi, N. (2024). Technology-enhanced language learning and pragmatics: Insights from digital game-based pragmatics instruction. Language Teaching, 57(1), 57-67.‏ https://doi.org/10.1017/S0261444823000101

Teachflow AI. (2022). Revolutionizing assessment: AI’s automated grading and feedback—unlocking efficiency, objectivity, and personalized learning. Teachflow AI. https://teachflow.ai/revolutionizing-assessment-ais-automated-grading-feedback-unlocking-efficiency-objectivity-and-personalized-learning/

Tedeschi, S., Martelli, F., & Navigli, R. (2022). ID10M: Idiom identification in 10 languages. Findings of the Association for Computational Linguistics: NAACL 2022, 2715–2726. https://doi.org/10.18653/v1/2022.findings-naacl.208

Tilmatine, M., Hubers, F., & Hintz, F. (2021). Exploring individual differences in recognizing idiomatic expressions in context. Journal of Cognition, 4(1), Article 37. https://doi.org/10.5334/joc.183

Tongue Tactic. (n.d.). Exploring idiomatic expressions across cultures. Tongue tactic. https://tonguetactic.com/language-learning/cultural-insights/exploring-idiomatic-expressions-across-cultures/

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. arXiv Preprint arXiv:1706.03762. https://doi.org/10.48550/arXiv.1706.03762

Vishwakarma, V. K. (2023, August). Translating cultural nuances: Challenges and strategies. ELT Voices: International Peer-Reviewed Journal for the Teachers of English, 13(2), 80–90. https://doi.org/10.5281/zenodo.8268531

Vula, E., & Tyfekçi, N. (2024, March 5). Navigating non-literal language: The complexities of translating idioms across cultural boundaries. Academic Journal of Interdisciplinary Studies, 13(2), 284–307. https://doi.org/10.36941/ajis-2024-0049

Woo, J. H., & Choi, H. (2021). Systematic review for AI-based language learning tools. arXiv Preprint arXiv: 2111.04455. https://doi.org/10.48550/arXiv.2111.04455

Wray, A. (2000). Formulaic sequences in second language teaching: Principle and practice. Applied Linguistics, 21(4), 463-489.‏ https://doi.org/10.1093/applin/21.4.463

Wu, W.-C. V., Hsieh, J. C., & Yang, J.-C. (2023). Personalizing flipped instruction to enhance EFL learners’ idiomatic knowledge and oral proficiency. In J. M. Spector, B. B. Lockee, & M. D. Childress (Eds.), Learning, design, and technology: An international compendium of theory, research, practice, and policy (pp. 883–905). Springer International Publishing. https://doi.org/10.1007/978-3-319-17461-7_59

Xia, Y., Shin, S.-Y., & Kim, J.-C. (2024). Cross-cultural intelligent language learning system: Leveraging AI to facilitate language learning strategies in cross-cultural communication. Applied Sciences, 14(13), Article 5651.‏ https://doi.org/10.3390/app14135651

Yalamati, S., & Batchu, R. K. (2024). Smart data processing: Unleashing the power of AI and ML. In J. M. Spector, B. B. Lockee, & M. D. Childress (Eds.), Practical applications of data processing, algorithms, and modeling (pp. 205–221). IGI Global. https://doi.org/10.4018/979-8-3693-2909-2.ch016

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education—where are the educators? International Journal of Educational Technology in Higher Education, 16, Article 39. https://doi.org/10.1186/s41239-019-0171-0

Zechner, K., & Hsieh, C.-N. (2024). Automated scoring and feedback for spoken language. In M. D. Shermis & J. Wilson (Eds.), The Routledge international handbook of automated essay evaluation (pp. 141–160). Routledge. https://doi.org/10.4324/9781003397618-10

Zechner, K., Evanini, K., Yoon, S. Y., Davis, L., Wang, X., Chen, L., & Leong, C. W. (2014, June). Automated scoring of speaking items in an assessment for teachers of English as a foreign language. In Proceedings of the Ninth Workshop on Innovative Use of NLP for Building Educational Applications (pp. 134–142). Association for Computational Linguistics. https://aclanthology.org/W14-1816

Zeng, Z., & Bhat, S. (2021). Idiomatic expression identification using semantic compatibility. Transactions of the Association for Computational Linguistics, 9, 1546–1562. https://doi.org/10.1162/tacl_a_00442

Zeng, Ziheng, & Bhat, Suma. (2022). Getting BART to ride the idiomatic train: Learning to represent idiomatic expressions. Transactions of the Association for Computational Linguistics, 10, 1120–1137. https://doi.org/10.1162/tacl_a_00510

Zeng, Z., Cheng, K. T., Nanniyur, S. V., Zhou, J., & Bhat, S. (2023). IEKG: A commonsense knowledge graph for idiomatic expressions. arXiv Preprint arXiv:2312.06053. https://doi.org/10.48550/arXiv.2312.06053

Zhou, J., Gong, H., & Bhat, S. (2021, August). PIE: A parallel idiomatic expression corpus for idiomatic sentence generation and paraphrasing. In P. Cook, J. Mitrović, C. Parra Escartín, A. Vaidya, P. Osenova, S. Taslimipoor, & C. Ramisch (Eds.), Proceedings of the 17th Workshop on Multiword Expressions (MWE 2021) (pp. 33–48). Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.mwe-1.5

Zou, B., Reinders, H., Thomas, M., & Barr, D. (2023). Using artificial intelligence technology for language learning. Frontiers in Psychology, 14, Article 1287667. https://doi.org/10.3389/fpsyg.2023.1287667

Zyzik, E. (2011). Second language idiom learning: The effects of lexical knowledge and pedagogical sequencing. Language Teaching Research, 15(4), 413–433. https://doi.org/10.1177/1362168811412025

Downloads

Published

2025-02-28